

Hypermedia APIs

Who's that?

● Bastian Krol
● @bastiankrol
● github.com/basti1302
● Consultant at codecentric
● Background: Java, JavaScript, Node.js,

Enterprisy stuff, Backends

Disclaimer

I'm not a hypermedia expert!

¯_(ツ)_/¯

Outline

● An example API
● Why does it matter?
● The hypermedia constraint
● REST vs. hypermedia
● Media Types (aka the hypermedia zoo)
● Implementation / server side
● Implementation / client side

The Bank Account API

Root URL: https://api.example.com/

GET /accounts: List of all accounts (for which the current user is authorized)

GET /accounts/12345: Returns the account overview for account 12345

GET /accounts/12345/transactions: A list of all transactions for this account
(paginated)

GET /accounts/12345/transactions?offset=100: To use pagination, attach
the offset parameter to the URL
GET /accounts/12345/transactions?
amount={amount}&reference={text}&partner={recipient/sender}: Search for
transactions/filter transactions

POST /accounts/12345/transfer: Transfer money from your account to
someone else

With Hypermedia:

Root URL: https://api.example.com/

… this might be all the documentation you need :D

Example

GET /

Example (2)

GET /
HTTP/1.1 200 OK
Content-Type: application/vnd.mason+json
Link:
<https://api.example.com/profiles/account>;rel="profile"

Example (3)

GET /
HTTP/1.1 200 OK
Content-Type: application/vnd.mason+json
Link: <https://api.example.com/profiles/account>;rel="profile"

{
 "@links": {
 "self": {
 "href": "/"
 },
 "accounts": {
 "href": "/accounts"
 }
 }
}

Example (3)

GET /accounts

{
 "accounts": [{
 "account_id": "12345",
 "@links": { "self": { "href": "/accounts/12345" } }
 },
 {
 "account_id": "12346",
 "@links": { "self": { "href": "/accounts/12346" } }
 }]
}

Example (4)

GET /accounts/12345
{
 "id": "12345",
 "balance": 1302.42,
 "@links": {
 "self": { "href": "/accounts/12345" },
 "transactions": { "href": "/accounts/12345/transactions" }
 },
 "@actions": {
 "transfer": {
 "title": "Transfer money to another account",
 "type": "json",
 "href": "/accounts/12345/transfer",
 "method": "POST",
 "schemaUrl": "/schemas/transfer"
 }
 }
}

Example (5)

GET /accounts/12345
{
 "id": "12345",
 "balance": -302.42,
 "@links": {
 "self": { "href": "/accounts/12345" },
 "transactions": { "href": "/accounts/12345/transactions" }
 }
}

Why Bother?

Hypermedia APIs enable...
● … less coupling between client and server
● … evolving APIs
● … generic clients (media type browsers)
● … discoverability

Why Bother? (2)

Hypermedia APIs...
● … can re-use generic client libs
● … need only very small API-specific clients
● … are easier to adopt
● … result in less one-off “standards” – less

duplicated efforts

Why Bother? (3)

Hypermedia APIs...
● … need less out-of-band information (less

human readable documentation)
● … provide more machine readable

information directly in the API
● … tackle the semantic challenge

The Hypermedia Constraint

aka HATEOAS

aka Hypermedia as the engine of application state

Application State Client→
● application state = client state = current

location
● only the client keeps application state
● server never tracks application state of

clients

The Hypermedia Constraint (2)

URL Space Server→
● server offers links
● client follows links (to change the application state)
● client has no hardcoded URLs (except root URL)

Resource State

Resource state Server→
● server keeps resource state
● server offers hypermedia controls to change

resource state
● client changes resource indirectly

– by using hypermedia controls
– by sending representations

REST vs. Hypermedia
(Terminology)

● You can do Hypermedia without REST
● You can't do REST without Hypermedia
● Nearly every so-called REST API does not do

Hypermedia – and is by definition not a REST
API </pedantic-nitpicking>

● Unfortunately, the term REST is fubar

Richardson Maturity Model

Trade Offs

● Isn't this more effort than the usual HTTP
CRUD API?

● Yes, probably
● Is it worth the effort?
● It depends :-)

Criteria For Using Hypermedia

● Public facing API or internal?
● Multiple clients or only one client?
● Client and Server implemented by the same

team, or at least by the same company?
● Is the API expected to be used for years?
● Might the API need to change?
● Can you afford to break existing clients?

Who's Doing It?

● GitHub
● Twitter
● Amazon (AppStream API)
● Netflix
● NPR (PMP)

The Hypermedia Zoo

● HAL
● Collection-JSON
● Mason
● Siren
● Uber

The Hypermedia Zoo (2)

● HTML Microformats
● HTML Microdata
● AtomPub

● … and more

The Hypermedia Zoo (3)

● Why so many?
● Which one to use?

Implementating
Hypermedia

Server Side

● Express
● express-resource
● Restify
● Percolator
● Others: Koa, Hapi, ...

Client Side

Libs for working with media types:
● HAL: Halfred, Halbert, Dave, express-hal,

hyperagent
● Siren: siren, siren-writer
● Collection+JSON: collection-json
● Microformats: microformat-node,

semantic-schema-parser
● Mason: -
● Uber: -

Client Side (2)

General client libs
● rest.js – helps with request/response lifecycle
● Traverson – follow a path of link relations

Further Reading

Richardson, Amundsen Amundsen

That's It

Thanks!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

