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Who's that?

● Bastian Krol
● @bastiankrol
● github.com/basti1302
● Consultant at codecentric
● Background: Java, JavaScript, Node.js, 

Enterprisy stuff, Backends



  

Disclaimer

I'm not a hypermedia expert! 

¯\_(ツ )_/¯



  

Outline

● An example API
● Why does it matter?
● The hypermedia constraint
● REST vs. hypermedia
● Media Types (aka the hypermedia zoo)
● Implementation / server side
● Implementation / client side



  

The Bank Account API

Root URL: https://api.example.com/

GET /accounts: List of all accounts (for which the current user is authorized)

GET /accounts/12345: Returns the account overview for account 12345

GET /accounts/12345/transactions: A list of all transactions for this account 
(paginated)

GET /accounts/12345/transactions?offset=100: To use pagination, attach 
the offset parameter to the URL
GET /accounts/12345/transactions?
amount={amount}&reference={text}&partner={recipient/sender}: Search for 
transactions/filter transactions

POST /accounts/12345/transfer: Transfer money from your account to 
someone else



  

With Hypermedia:

Root URL: https://api.example.com/

… this might be all the documentation you need :D



  

Example

GET /



  

Example (2)

GET /
HTTP/1.1 200 OK
Content-Type: application/vnd.mason+json
Link: 
<https://api.example.com/profiles/account>;rel="profile"



  

Example (3)

GET /
HTTP/1.1 200 OK
Content-Type: application/vnd.mason+json
Link: <https://api.example.com/profiles/account>;rel="profile"

{
  "@links": {
    "self": {
      "href": "/"
    },
    "accounts": {
      "href": "/accounts"
    }
  }
}



  

Example (3)

GET /accounts

{
  "accounts": [{
      "account_id": "12345",
      "@links": { "self": { "href": "/accounts/12345" } }
    },
    {
      "account_id": "12346",
      "@links": { "self": { "href": "/accounts/12346" } }
    }]
}



  

Example (4)

GET /accounts/12345
{
  "id": "12345",
  "balance": 1302.42,
  "@links": { 
    "self": { "href": "/accounts/12345" },
    "transactions": { "href": "/accounts/12345/transactions" }
  },
  "@actions": {
    "transfer": {
      "title": "Transfer money to another account",
      "type": "json",
      "href": "/accounts/12345/transfer",
      "method": "POST",
      "schemaUrl": "/schemas/transfer"
    }
  }
}



  

Example (5)

GET /accounts/12345
{
  "id": "12345",
  "balance": -302.42,
  "@links": { 
    "self": { "href": "/accounts/12345" },
    "transactions": { "href": "/accounts/12345/transactions" }
  }
}



  

Why Bother?

Hypermedia APIs enable...
● … less coupling between client and server
● … evolving APIs
● … generic clients (media type browsers)
● … discoverability



  

Why Bother? (2)

Hypermedia APIs...
● … can re-use generic client libs
● … need only very small API-specific clients
● … are easier to adopt
● … result in less one-off “standards” – less 

duplicated efforts



  

Why Bother? (3)

Hypermedia APIs...
● … need less out-of-band information (less 

human readable documentation)
● … provide more machine readable 

information directly in the API
● … tackle the semantic challenge



  

The Hypermedia Constraint

aka HATEOAS 

aka Hypermedia as the engine of application state

Application State  Client→
● application state = client state = current 

location
● only the client keeps application state
● server never tracks application state of 

clients



  

The Hypermedia Constraint (2)

URL Space  Server→
● server offers links
● client follows links (to change the application state)
● client has no hardcoded URLs (except root URL)



  

Resource State

Resource state  Server→
● server keeps resource state
● server offers hypermedia controls to change 

resource state
● client changes resource indirectly

– by using hypermedia controls 
– by sending representations



  

REST vs. Hypermedia 
(Terminology)

● You can do Hypermedia without REST
● You can't do REST without Hypermedia
● Nearly every so-called REST API does not do 

Hypermedia – and is by definition not a REST 
API </pedantic-nitpicking>

● Unfortunately, the term REST is fubar



  

Richardson Maturity Model



  

Trade Offs

● Isn't this more effort than the usual HTTP 
CRUD API?

● Yes, probably
● Is it worth the effort?
● It depends  :-)



  

Criteria For Using Hypermedia

● Public facing API or internal?
● Multiple clients or only one client?
● Client and Server implemented by the same 

team, or at least by the same company?
● Is the API expected to be used for years?
● Might the API need to change?
● Can you afford to break existing clients?



  

Who's Doing It?

● GitHub
● Twitter
● Amazon (AppStream API)
● Netflix
● NPR (PMP)



  

The Hypermedia Zoo

● HAL
● Collection-JSON
● Mason
● Siren
● Uber



  

The Hypermedia Zoo (2)

● HTML Microformats
● HTML Microdata 
● AtomPub

● … and more 



  

The Hypermedia Zoo (3)

● Why so many?
● Which one to use?



  

Implementating
Hypermedia



  

Server Side

● Express
● express-resource
● Restify
● Percolator
● Others: Koa, Hapi, ...



  

Client Side

Libs for working with media types:
● HAL: Halfred, Halbert, Dave, express-hal, 

hyperagent
● Siren: siren, siren-writer
● Collection+JSON: collection-json
● Microformats: microformat-node, 

semantic-schema-parser
● Mason: -
● Uber: -



  

Client Side (2)

General client libs
● rest.js – helps with request/response lifecycle
● Traverson – follow a path of link relations



  

Further Reading

Richardson, Amundsen               Amundsen



  

That's It

Thanks!

Questions?
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